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Strategy updating rules and strategy distributions in dynamical multiagent systems
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In the evolutionary version of the minority game, agents update their strategies~gene valuep) in order to
improve their performance. Motivated by the recent intriguing results obtained for prize-to-fine ratios, which
are smaller than unity, we explore the system’s dynamics with a strategy updating rule of the formp→p
6dp (0<p<1). We find that the strategy distribution depends strongly on the values of the prize-to-fine ratio
R, the length scaledp, and the type of boundary condition used. We show that these parameters determine the
amplitude and the frequency of the temporal oscillations observed in the gene space. These regular oscillations
are shown to be the main factors which determine the strategy distribution of the population. In addition, we
find that the agents characterized byp5

1
2 ~a coin-tossing strategy! have the best chances of survival at

asymptotically long times, regardless of the value ofdp and the boundary conditions used.

DOI: 10.1103/PhysRevE.68.026115 PACS number~s!: 02.50.Le, 87.23.Kg, 89.65.Ef
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The minority game~MG! is a successful model describin
a population of competing and evolving individuals. T
evolutionary version of the model~EMG! was introduced
and widely explored by Johnsonet al. @1#. This complex
system has been explored extensively in the last few ye
see e.g., Refs.@2–21# and references therein. The prese
work is mainly motivated by the recent results of Re
@20,15#.

In this toy model, a population ofN agents with limited
information and capabilities repeatedly competes for a l
ited global resource, or to be in the minority. The desire to
in a minority group is found in many real life situations, su
as financial markets, traffic jams, or among a group of pre
tors ~who wish to hunt in areas with fewer competitors!.

At each round of the game, every individual has to cho
whether to be in room ‘‘0’’~e.g., choosing to sell an asset! or
in room ‘‘1’’ ~e.g., choosing to buy an asset!. At the end of
each turn, the agents belonging to the smaller group~the
minority! are the winners, each of them gainsR points ~the
‘‘prize’’ !, whereas the others loose a point~the ‘‘fine’’ !. The
agents share a common look-up table containing the
comes of recent occurrences. This allows the determina
of a ‘‘predicted trend’’ in the system, which is followed b
each agent with probabilityp, known as the agent’s ‘‘gene
value.

In the evolutionary formulation of the model~EMG!, the
agents are allowed to evolve their strategies based on the
experiences. If an agent’s score falls below some valued, he
modifies its gene value. In this sense, each agent trie
learn from his past mistakes and to adjust his strategy
order to perform better.

A remarkable conclusion deduced from the EMG@1# is
that a population of competing agents tends toself-segregate
into opposing groups characterized by extreme behavio
was realized that in order to flourish in such situations,
agent should behave in an extreme way (p50 or p51) @1#.
On the other hand, in many real life situations, the prize-
fine ratio may take a variety of different values@15,13#. A
different kind of strategy may be more favoralbe in su
situations. In recent studies, it was found@15# that an intrigu-
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ing phase transition exists in the model; ‘‘Confusion’’ an
‘‘indecisiveness’’ take over when the prize-to-fine ratio fa
below some critical value, in which case the agents cha
terized by a coin-tossing strategy (p5 1

2 ) perform better than
the extreme ones. In such circumstances, the agents ten
cluster around p5 1

2 ~see Fig. 1 of Ref.@15#! rather than
self-segregate into two opposing groups.

In Ref. @15#, we have considered auniform strategy up-
dating rule in which the new strategy is chosen uniform
within the range 0<p<1. Burgos, Ceva, and Perazzo@20#
have recently considered the same model problem with
updating rule of the formp→p6dp, where dp, 1

2 , and
found that the population tends to form anM-shaped strategy
distribution in theR,1 case. In the present work, we furth
explore this system and provide some insights that ext
and link the results of Ref.@15# to those of Ref.@20#.

First, we would like to stress the importance of the chos
boundary conditionsin the case of an updating rule of th
form p→p6dp @1#. Figure 1 displays the long-time ave
aged gene distributionP(p) of the agents for two differen
types of boundary conditions: Periodic and reflective. O
finds that for periodic boundary conditions, the populati
tends to cluster at intermediate gene values. The curve
tween the two peaks, located atp5dp and p512dp, is
almost flat, while the agents with extreme gene valuesp
.0 andp.1) perform much worse~we shall shortly dem-
onstrate that the gene distribution may also have an inve
U shape, depending on the precise values ofR anddp). On
the other hand, the gene distribution is almost flat for refl
tive boundary conditions.

The underlying mechanism that is responsible for this i
portant difference is the temporal oscillations observed in
winning probabilities of the agents@15,16#. Figure 2 displays
the time dependence of the winning probability of ap50
agent ~the winning probability of a central agent, withp
5 1

2 , is practically constant in time!. We consider three dis
tinct cases, characterized by~i! dp50.1 with periodic
boundary conditions,~ii ! dp50.1 with reflective boundary
conditions, and~iii ! uniform updating rule. One finds smalle
oscillation amplitudes and longer periods for reflecti
©2003 The American Physical Society15-1
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boundary conditions, as compared to the case of perio
boundary conditions. This implies that for reflective boun
ary conditions, the performance of extreme agents (p50 and
p51) becomes quite similar to the performance of cen
agents~characterized byp5 1

2 ), implying a flatter gene dis-
tribution for these boundary conditions. On the other ha
for periodic boundary conditions, one finds that the tempo
oscillations are much more similar to the uniform case st
ied in Refs.@15,16# ~as compared to the case of reflecti

boundary conditions!. Indeed, the ratioP( 1
2 ):P(0) for peri-

odic boundary conditions is very similar to the correspon
ing ratio in the uniform case~compare Fig. 1 with Fig. 1 of
Ref. @15#!.

FIG. 1. The strategy distributionP(p) for periodic boundary
conditions~solid line! and reflective boundary conditions~dashed
line!. The results are forN510 001 agents,R50.8, d524, and
dp50.1. Each point represents an average value over 10 runs
100 000 time steps per run.

FIG. 2. Temporal dependence of the winning probabilitiest(p
50) for three distinct cases:~i! dp50.1 with periodic boundary
conditions,~ii ! dp50.1 with reflective boundary conditions, an
~iii ! uniform updating rule. The results are forN510 001 agents,
R50.8, andd524.
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Figure 3 shows the strategy distribution of the populat
for different prize-to-fine ratios, and withdp!1. The results
demonstrate the existence of a stable phase characterize
an inverse-U shaped gene distribution. However, unlike t
uniform case@15#, the critical value ofR which separates the
inverse-U distribution from theM-shaped one does not equ
1 ~in the N→` limit !.

In Fig. 4, we displayP(p) for different dp values with
periodic boundary conditions. We find that the peaks of
strategy distribution~for prize-to-fine ratios which are larg
enough to allow anM-shaped gene distribution! occurs atp
5dp and its symmetric counterpart 12dp. Regardless of
the value ofdp, the agents donot self-segregate—the ex

nd

FIG. 3. The strategy distributionP(p) for different values of the
prize-to-fine ratio: R50.1 and R50.5. The results are forN
510 001 agents,d524,dp50.1, and periodic boundary cond
tions. Each point represents an average value over 10 runs
100 000 time steps per run.

FIG. 4. The strategy distributionP(p) for different dp values:
dp50.1, 0.25, and 0.4. The results are forN510 001 agents,R
50.9,d524, and periodic boundary conditions. Each point rep
sents an average value over 10 runs and 100 000 time steps pe
5-2
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treme strategies (p50 andp51) perform worst. The strat
egy distribution moves smoothly into an inverse-U shape in
the limit of dp5 1

2 @15#. Figure 5 displays the same resu
for reflective boundary conditions, wheredp51 is equiva-
lent to the uniform updating rule@15#.

Figure 6 displays the average life span^L(p)& of the
agents. In order to get a better picture of the life span dis
bution, we also plot̂L(p)&1sL(p) as a function of the gene
value p. Here,sL(p) is the root mean square separation
the life spans. In this case, one finds an inverse-U shaped
distribution ~with the peak occurring atp5 1

2 ). This implies
that the agents characterized byp5 1

2 ~a coin-tossing strat-

FIG. 5. The strategy distributionP(p) for different dp values:
dp50.1, 0.25, and 0.4. The results are forN510 001 agents,R
50.9,d524, and reflective boundary conditions. Each point re
resents an average value over 10 runs and 100 000 time step
run.

FIG. 6. The average life span̂L(p)& ~solid curve! and ^L(p)&
1sL(p) ~dashed curve! of the agents. The results are forN
510 001 agents,R50.8,d524,dp50.1, and periodic boundary
conditions. Each point represents an average value over 10 run
100 000 time steps per run.
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egy! have the best chances of survival in asymptotically lo
times, as predicted analytically in Ref.@17#. This important
feature is explained by the global currents in the gene sp
which reducethe value ofsL(p50), and have a negligible
effect onsL(p5 1

2 ) @16,17#. We emphasize that these resu
hold true for both periodic and reflective boundary con
tions.

The efficiency of the system is defined as the number
agents in the minority room divided by the maximal possib
size of the minority group, (N21)/2. Figure 7 displays the
efficiency as a function of the length scaledp. The system’s
efficiency is a monotonic decreasing function ofdp. This is
caused by the fact that largerdp values implylarger tempo-
ral oscillations in the occupation numbers of the rooms, th
decreasing the number of agents in the winning group~and
increasing the number of agents in the losing room!.

We would like to stress that different complex system
display different updating rules and different boundary co
ditions. For instance, in a system in which an agent wh
score falls below the thresholdd quits the game~and re-
placed by anew agent!, the relevant updating rule is th
uniform one. In systems with periodic boundary condition
the agents identify thep50 strategy with the p51
strategy—this reflects a psychological effect in which h
mans tends to replace one extreme strategy with the o
extreme strategy@Extreme agents~with p50) may prefer
another extreme strategy (p51) on taking the cautious strat
egy p5 1

2 .# In biological systems, in which this psycholog
cal effect is not strong, the relevant boundary conditions
the reflecting ones.

Finally, we would like to address the last point raised
Ref. @20#. It is claimed that the fluctuations in the avera
gene valuê p& have been considered in Ref.@14#. However,
the oscillatory behavior of^p&, which is a highly important
feature of the system’s dynamics, wasnot observed in Ref.
@14#. Rather, Burgoset al. @14# found a nonoscillatory value

for ^p&-1
2 , see Eq.~15! of Ref. @14#. We have shown, on the

-
per

nd

FIG. 7. The efficiency of the system as a function of the len
scale, dp. Horizontal line represents the efficiency for a coi
tossing situation. The results are forN510 001 agents,R50.7,d
524, and reflective boundary conditions.
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other hand, that the quantitŷp&-1
2 displays temporal oscil-

lations with awell-definedfrequency and amplitude@15,16#.
It is important to distinguish between theregular temporal
oscillations of the physical quantities~such aŝ p&) discussed
in Refs.@15,16#, as opposed to thermal fluctuations discuss
in Ref. @14#. Thermal fluctuations of a thermodynamic sy
tem are essentially random in nature, whereas we have fo
regular oscillations that are characterized by a well-defi
frequency and amplitude. Theoscillatory nature of ^p&
@15,16# has been proven to be an essential feature whic
e

t

in
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responsible for the dynamical phase transition~from self-
segregation to clustering! observed in the EMG@17#. We
would like to emphasize that these oscillations exist also
the complex systems with a strategy updating rule of
form p→p6dp, regardless of the value ofdp and the type
of boundary conditions used~see Fig. 2!.
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